lunes, 26 de julio de 2010

UNIDAD 3 BIOMOLECULAS

BIOELEMENTOS Y BIOMOLÉCULAS

BIOELEMENTOS

Son los elementos químicos que forman parte de la materia viva. Según su importancia y abundancia se clasifican en:

• Elementos primarios: carbono, hidrógeno, oxígeno y nitrógeno. Representan algo más del 96% del peso de cualquier organismo. Son elementos imprescindibles para la creación de moléculas orgánicas.

• Elementos secundarios:fósforo, azufre, sodio, potasio, calcio, magnesio y cloro. Constituyen el 3% en peso aproximadamente.

• Oligoelementos: Representan menos del 1%. No todos forman parte de los seres vivos. Cabe citar por ejemplo el hierro, cinc, bromo, yodo y silicio.

Al contrario que en los seres inertes, donde el silicio es la base, en los seres vivos se utiliza la química del carbono por varias razones:

• Al tener peso atómico bajo permite enlaces covalentes estables, pero no tanto para impedir las reacciones metabólicas.

• La estructura del átomo de carbono permite conseguir largas cadenas ramificadas que pueden romperse con facilidad.

• Los átomos de carbono se unen con facilidad al nitrógeno, hidrógeno, oxígeno y azufre, facilitando así la unión de diferentes grupos funcionales.

Función de los bioelementos primarios y secundarios

El carbono, hidrógeno y oxigeno (respiración aerobia incorpora electrones) constituyen la estructura básica de las moléculas orgánicas.
• El nitrógeno participa en la construcción de proteínas y ácidos nucleicos.
• El fósforo forma parte de los ácidos nucleicos y sus enlaces son utilizados en la obtención de energía (ATP).
• El azufre constituye parte de la mayoría de las proteínas.

LAS BIOMOLÉCULAS

Inorgánicas (agua, sales minerales y gases), en la naturaleza y seres vivos.
Orgánicas (glúcidos, lípidos, proteínas, ácidos nucleicos y enzimas), solo en seres vivos.

Estructura de la molécula de AGUA

El agua es la molécula más abundante en los seres vivos, y representa entre el 70 y 90% del peso de la mayor parte de los organismos. El contenido varia de una especie a otra; también es función de la edad del individuo (su % disminuye al aumentar la edad) y el tipo de tejido.

El papel primordial del agua en el metabolismo de los seres vivos se debe sus propiedades físicas y químicas, derivadas de la estructura molecular.A temperatura ambiente es líquida, al contrario de lo que cabría esperar, ya que otras moléculas de parecido peso molecular (SO2, CO2, SO2, H2S, etc) son gases. Este comportamiento se debe a que los dos electrones de los dos hidrógenos están desplazados hacia el átomo de oxigeno, por lo que en la molécula aparece un polo negativo, donde está el oxígeno, debido a la mayor densidad electrónica, y dos polos positivos, donde están los dos hidrógenos, debido a la menor densidad electrónica. La molécula de agua son dipolos.
Los enlaces por puentes de hidrógeno son, aproximadamente, 1/20 más débiles que los enlaces covalentes, el hecho de que alrededor de cada molécula de agua se dispongan otras moléculas unidas por puentes de hidrógeno, permite que se forme en el seno del agua una estructura ordenada de tipo reticular, responsable en gran parte del comportamiento anómalo y de sus propiedades físicas y químicas.

2. Propiedades físico-químicas del agua
El agua presenta las siguientes propiedades físico-químicas:
a) Acción disolvente.Esta propiedad se debe a su capacidad para formar puentes de hidrógeno con otras sustancias, ya que estas se disuelven cuando interaccionan con las moléculas polares del agua.
b) Fuerza de cohesión entre sus moléculas.Los puentes de hidrógeno mantienen a las moléculas fuertemente unidas, formando una estructura compacta que la convierte en un liquido casi incompresible.

c) Elevada fuerza de adhesión.
De nuevo los puentes de hidrógeno del agua son los responsables, al establecerse entre estos y otras moléculas polares, y es responsable, junto con la cohesión de la capilaridad, al cual se debe, en parte, la ascensión de la sabia bruta desde las raíces hasta las hojas.
d) Gran calor específico. El agua absorbe grandes cantidades de calor que utiliza en romper los puentes de hidrógeno. Su temperatura desciente más lentamente que la de otros líquidos a medida que va liberando energía al enfriarse. Esta propiedad permite al citoplasma acuoso servir de proteccción para las moléculas orgánicas en los cambios bruscos de temperatura.

e) Elevado calor de vaporización.A 20ºC se precisan 540 calorías para evaporar un gramo de agua, lo que da idea de la energía necesaria para romper los puentes de hidrógeno establecidos entre las moléculas del agua líquida y, posteriormente, para dotar a estas moléculas de la energía cinética suficiente para abandonar la fase líquida y pasar al estado de vapor.

f) Elevada constante dieléctrica.
Por tener moléculas dipolares, el agua es un gran medio disolvente de compuestos iónicos, como las sales minerales, y de compuestos covalentes polares como los glúcidos.
Las moléculas de agua, al ser polares, se disponen alrededor de los grupos polares del soluto, llegando a desdoblar los compuestos iónicos en aniones y cationes, que quedan así rodeados por moléculas de agua. Este fenómeno se llama solvatación iónica.
g) Bajo grado de ionización. De cada 107 de moléculas de agua, sólo una se encuentra ionizada.
H2O H3O+ + OH-

Propiedades Bioquímicas del agua

Los seres vivos se han adaptado para utilizar químicamente el agua en dos tipos de reacciones:
a) En la fotosíntesis en la que los enzimas utilizan el agua como fuente de átomos de hidrógeno.

b) En las reacciones de hidrólisis, en que los enzimas hidrolíticos han explotado la capacidad del agua para romper determinados enlaces hasta degradar los compuestos orgánicos en otros más simples, durante los procesos digestivos.
Ionización del agua y escala de pH.

Un ion hidrogeno se disocia de su átomo de oxigeno de la molécula (unidos por enlace covalente), y pasa a unirse con el átomo de oxígeno de la otra molécula, con el que ya mantenía relaciones mediante el enlace de hidrógeno.

El agua no es un líquido químicamente puro, ya que se trata de una solución iónica que siempre contiene algunos iones H3O+ y OH- . (Se utiliza el símbolo H+, en lugar de H3O+).El producto [H+]·[OH-]= 10-14, se denomina producto iónico del agua, y constituye la base para establecer la escala de pH, que mide la acidez o alcalinidad de una disolución acuosa.
pH=-log[H+]

El pH del agua es 7 y lo consideramos neutro. Valores mayores serán básicos o alcalinos y valores menores ácidos.
Sistemas tampón o buffer

El sistemas tampón o buffer que mantienen el pH constante, mediante mecanismos homeostáticos. Las variaciones de pH, afectan a la estabilidad de las proteínas y, en concreto, en la actividad catalítica de los enzimas, pues en función del pH, pueden generar cargas eléctricas que modifiquen su actividad biológica.

Los sistemas tampón que tienden a impedir la variación del pH cuando se añaden pequeñas cantidades de iones H+ o OH- consisten en un par ácido-base conjugada que actúan como dador y aceptor de de protones, respectivamente.
Osmosis y presión osmótica

Se define ósmosis como una difusión pasiva, caracterizada por el paso del agua, disolvente, a través de la membrana semipermeable, desde la solución más diluida a la más concentrada.
Y entendemos por presión osmótica, a aquella que seria necesaria para detener el flujo de agua a través de la membrana semipermeable. Al considerar como semipermeable a la membrana plasmática, las células de los organismos pluricelulares deben permanecer en equilibrio osmótico con los líquidos tisulares que los bañan.
Si los líquidos extracelulares aumentan su concentración de solutos, se haría hipertónica respecto a las células, como consecuencia se originan pérdida de agua y deshidratación (plasmólisis).
En el caso de los eritrocitos sanguíneos la plasmólisis se denomina crenación y la turgescencia el de hemólisis.

Sales Minerales

En función de su solubilidad se pueden distinguir:a) Sales inorgánicas insolubles en agua.Su función es de tipo plástico, formando estructuras de protección y sostén, como por ejemplo:
Caparazones de crustáceos y moluscos (CaCO3) y caparazones silíceos de radiolarios y diatomeas.
Esqueleto interno en vertebrados (fosfato, cloruro,fluoruro y carbonato de calcio) y los dientes.

Determinadas células incorporan sales minerales, como las que se pueden encontrar en la pared de celulosa de los vegetales.

El carbonato de calcio también se puede encontrar en el oído interno, formando los otolitos que intervienen en el mantenimiento del equilibrio interno o partículas de magnetita que,
b)Sales inorgánicas solubles en agua.La actividad biológica que proporcionan se debe a sus iones y desempeñan, fundamentalmente, las siguientes funciones:

Funciones catalíticas. Algunos iones como Mn+2, Cu+2, Mg+2, Zn+2, etc. actúan como cofactores enzimáticos siendo necesarios para el desarrollo de la actividad catalítica de ciertas enzimas .

Funciones osmóticas. Intervienen en la distribución del agua intra y extra celulares. Los iones Na+, K+, Cl-, Ca+2, participan en la generación de gradientes electroquímicos, que son imprescindibles en el potencial de membrana y del potencial de acción en los procesos de la sinapsis neuronal, transmisión del impulso nervioso y contracción muscular. Función tamponadora. Se lleva a cabo por los sistemas carbonato-bicarbonato y monofosfato-bifosfáto.
GLUCIDOS

1. CONCEPTO Y CLASIFICACIÓN
· Son biomoléculas constituidas por C, H, y O (a veces tienen N, S, o P)El nombre de glúcido deriva de la palabra "glucosa" que proviene del vocablo griego glykys que significa dulce, aunque solamente lo son algunos monosacáridos y disacáridos. Su fórmula general suele ser (CH2O)n.
· CLASIFICACIÓN


· MONOSACÁRIDOS U OSAS. Glúcidos de 3 a 8 átomos de C., con propiedades reductoras.ÓSIDOS. Asociación de monosacáridos.

· - HOLÓSIDOS
· * OLIGOSACARIDO. De 2 a 10 monosacáridos. Resultan de especial interés disacáridos y trisacáridos. * POLISACÁRIDOS. Mas de 10 monosacáridos.- HETERÓSIDOS. Monosacáridos y otras sustancias no glucídicas.

Monosacáridos

Se nombran haciendo referencia al nº de carbonos (3-12), terminado en el sufijo osa. Así para 3C: triosas, 4C:tetrosas, 5C:pentosas, 6C:hexosas, etc.

No son hidrolizables y a partir de 7C son inestables.
Presentan un esqueleto carbonado con grupos alcohol o hidroxilo y son portadores del grupo aldehído (aldosas) o cetónico (cetosas).

Propiedades: Son solubles en agua, dulces, cristalinos y blancos. Cuando son atravesados por luz polarizada desvían el plano de vibración de esta.
Estructura e isomerías. Los azúcares mas pequeños pueden escribirse por proyección en el plano.

Si dos monosacáridos se diferencian solo en el -OH de un carbono se denominan epímeros. Si son imagenes especulares entre sí se denominan enantiomeros.
PRINCIPALES MONOSARIDOS

ALDOSAS
CETOSAS

Triosas: Destacan el D-gliceraldehído y la dihidroxiacetona.

Pentosas: La D-ribosa forma parte del ácido ribonucleico y la 2-desoxirribosa del desoxirribonucleico. En la D-ribulosa destaca su importancia en la fotosíntesis.

Hexosas: La D-Glucosa se encuentra libre en los seres vivos. Es el mas extendido en la naturaleza, utilizandólo las células como fuente de energía. La D-fructosa se encuentra en los frutos y la D-Galactosa en la leche.

Enlaces
N-glucosídico y O-glucosídico


Hay dos tipos de enlaces entre un monosacárido y otras moléculas.
a) El enlace N-Glucosídico se forma entre un -OH y un compuesto aminado, originando aminoazúcares.

b) El enlace O-Glucosídico se realiza entre dos -OH de dos monosacáridos.
Será -Glucosídico si el primer monosacárido es , y -Glucosídico si el primer monosacárido es .


Disacáridos
La capacidad reductora de los glúcidos se debe a que el grupo aldehído o cetona puede oxidarse dando un ácido.
azucarera. Es el único disacárido no reductor, ya que los dos carbonos anoméricos de la glucosa y fructosa están implicados en el enlace G(1 ,2 ).


Polisacáridos

Están formados por la unión de muchos monosacáridos, de 11 a cientos de miles.Sus enlaces son O-glucosídicos con pérdida de una molécula de agua por enlace.
Características
c) Proteoglucanos. El 80% de sus moléculas están formadas por polisacáridos y una pequeña fracción proteica. Son heteropolisacáridos animales como el ácido hialurónico (en tejido conjuntivo), heparina (sustancia anticoagulante), y condroitina (en cartílagos, huesos, tejido conjuntivo y córnea)

e) Glucolípidos. Están formados por monosacáridos u oligosacáridos unidos a lípidos. Se les puede encontrar en la membrana celular. Los mas conocidos son los cerebrósidos y gangliósidos.



Funciones de los Glúcidos.

Energética. El glúcido más importante y de uso inmediato es la glucosa. Sacarosa, almidón (vegetales) y glucógeno (animales) son formas de almacenar glucosas.

Estructural. El enlace impide la degradación de estas moléculas y hace que algunos organismos puedan permanecer durante cientos de años.
LIPIDOS

Concepto y Clasificación
·
· Con características químicas diversas, pero propiedades físicas comunes: poco o nada solubles en agua, siéndolo en los disolventes orgánicos (éter, benceno, cloroformo, acetona, alcohol).

Dada la diversidad de características químicas, su clasificación también lo es: puede hacerse atendiendo a criterios de saponificación, por simples o complejos o resaltando su importancia biológica, que será lo suficientemente destacada a lo largo de este tema.
Estructura y características de los ácidos grasos


Son ácidos carboxílicos de cadena larga, suelen tener nº par de carbonos (14 a 22), los más abundantes tienen 16 y 18 carbonos.
Los ácidos grasos son saturados cuando no poseen enlaces dobles, son flexibles y sólidos a temperatura ambiente.

Los Insaturados o poliinsaturados si en la cadena hay dobles o triples enlaces, rígidos a nivel del doble enlace siendo líquidos aceitosos.
Propiedades físicas.
A)Solubilidad. Son moléculas bipolares o anfipáticas (del griego amphi, doble).

B) Punto de fusión. En los saturados, el punto de fusión aumenta debido al nº de carbonos, mostrando tendencia a establecer enlaces de Van der Waals entre las cadenas carbonadas.

Los Insaturados tienen menos interacciones de este tipo debido al codo de su cadena.
Propiedades químicas.
A) Esterificación. El ácido graso se une a un alcohol por enlace covalente formando un ester y liberando una molécula de agua.
B)Saponificación. Reaccionan los álcalis o bases dando lugar a una sal de ácido graso que se denomina jabón. El aporte de jabones favorece la solubilidad y la formación de micelas de ácidos grasos.

Acilglicéridos, grasa simples o neutras

Son lípidos simples formados por
glicerol esterificado por uno, dos, o tres ácidos grasos, en cuyo caso: monoacilglicérido, diacilglicérido o triacilglicérido respectivamente.
Clasificación.
A) Aceites. Si los ácidos grasos son Insaturados o de cadena corta o ambas cosas a la vez, la molécula resultante es líquida a temperatura ambiente y se denomina aceite.

B) Mantecas. Son grasas semisólidas a temperatura ambiente. La fluidez de esta depende de su contenido en ácidos Insaturados y esto último relacionado a la alimentación.
C)Sebos. Son grasas sólidas a temperatura ambiente, como las de cabra o buey. Están formadas por ácidos grasos saturados y cadena larga.

1.-Glicerolípidos. Poseen dos moléculas de ácidos grasos mediante enlaces ester a dos grupos alcohol de la glicerina (posiciones y ). Según sea el sustituyente unido al tercer grupo alcohol de la glicerina se forman los:

a) Gliceroglucolípidos. Si se une un glúcido. Lípidos que se encuentran en membranas de bacterias y células vegetales.
b) Fosfolípidos. Se une el ácido fosfórico y constituye el ácido fosfatídico.

La estructura de los distintos Fosfolípidos se pueden considerar derivados del ácido fosfatídico, y por ello se nombran con el prefijo fosfatidil seguido del nombre del derivado aminado o polialcohol con el que se une.

4.- Céridos o ceras

Son ésteres de un ácido graso de cadena larga. Sólidos a temperatura ambiente, poseen sus dos extremos hidrófobos, lo que determina su función impermeabilizar y proteger.

5.- Esteroides

Son lípidos que derivan del ciclopentano perhidrofenantreno, denominado gonano (antiguamente esterano). Su estructura la forman cuatro anillos de carbono (A, B, C y D). Los esteroides se diferencian entre sí por el nº y localización de sustituyentes.

6.- Terpenos o Isoprenoides


Están formados por polimerización del isopreno.

Son moléculas muy abundantes en los vegetales y su clasificación se determina por el nº de isoprenos que contienen.

a) Monoterpenos: (dos isoprenos)Se encuentran aquí los aceites esenciales de muchas plantas, a las que dan su olor sabor característicos: mentol, geraniol, limoneno, pineno, alcanfor etc.

b) Diterpenos: (cuatro isoprenos) Es de destacar el fitol que forma parte de la clorofila y ser precursor de la vitamina A. Las vitaminas A, E y K también son diterpenos.

c) Tetraterpenos: (ocho isoprenos) En este grupo son abundantes las xantofilas y carotenos, pigmentos vegetales amarillo y anaranjado respectivamente. Dan color a los frutos, raíces (zanahoria) flores etc.En la fotosíntesis desempeñan un papel clave absorbiendo energía luminosa de longitudes de onda distinta a las que capta la clorofila. El caroteno es precursor de la vitamina A.

d) Politerpenos: (muchos isoprenos) Es de destacar el caucho, obtenido del Hevea Brasiliensis, que contiene varios miles de isoprenos. Se usa en la fabricación de objetos de goma.

7.- Funciones de los lípidos

Reserva.
Constituyen la principal reserva energética del organismo. Sabido es que un gramo de grasa produce 9,4 Kc. En las reacciones metabólicas de oxidación, mientras que los prótidos y glúcidos solo producen 4,1 Kc./gr. La oxidación de los ácidos grasos en las mitocondrias produce una gran cantidad de energía.Los ácidos grasos y grasas (Acilglicéridos) constituyen la función de reserva principal.

Estructural.
Forman las bicapas lipídicas de las membranas citoplasmáticas y de los orgánulos celulares. Fosfolípidos, colesterol, Glucolípidos etc. son encargados de cumplir esta función. En los órganos recubren estructuras y les dan consistencia, como la cera del cabello. Otros tienen función térmica, como los acilglicéridos, que se almacenan en tejidos adiposos de animales de clima frío.
También protegen mecánicamente, como ocurre en los tejidos adiposos de la planta del pie y en la palma de la mano del hombre.Resumiendo: la función estructural está encargada a Glucolípidos, Céridos, Esteroles, Acilglicéridos y Fosfolípidos.

Transportadora.
El transporte de lípidos, desde el intestino hasta el lugar de utilización o al tejido adiposo (almacenaje), se realiza mediante la emulsión de los lípidos por los ácidos biliares y los proteolípidos, asociaciones de proteínas específicas con triacilglicéridos, colesterol, fosfolípidos, etc., que permiten su transporte por sangre y linfa.
PROTEINAS
1. Son constituyentes químicos fundamentales e imprescindibles en la materia viva porque:

2. a)son los "instrumentos moleculares" mediante los cuales se expresa la información genética; es decir, las proteinas ejecutan las órdenes dictadas por los ácidos nucléicos.

3. b)son sustancias "plásticas" para los seres vivos, es decir, materiales de construcción y reparación de sus propias estructuras celulares. Sólo excepcionalmente sirven como fuente de energía.

4. c)muchas tienen "actividad biológica" (transporte, regulación, defensa, reserva, etc...). Esta característica diferencia a las proteinas de otros principios inmediatos como glúcidos y lípidos que se encuentran en las células como simples sustancias inertes.



Composición Química y Clasificación

Las proteinas son biopolímeros (macromoléculas orgánicas), de elevado peso molecular, constituidas basicamente por carbono (C), hidrógeno (H), oxígeno (O) y nitrógeno (N); aunque pueden contener también azufre (S) y fósforo (P) y, en menor proporción, hierro (Fe), cobre (Cu), magnesio (Mg), yodo (Y), etc...

Estos elementos químicos se agrupan para formar unidades estructurales (monómeros) llamados AMINOACIDOS, a los cuales podriamos considerar como los "ladrillos de los edificios moleculares protéicos".

Los aminoácidos.

Son las unidades básicas que forman las proteinas. Su denominación responde a la composición química general que presentan, en la que un grupo amino (-NH2) y otro carboxilo o ácido (-COOH) se unen a un carbono (-C-).
Las otras dos valencias de ese carbono quedan saturadas con un átomo de hidrógeno (-H) y con un grupo químico variable al que se denomina radical (-R).
.

En la naturaleza existen unos 80 aminoácidos diferentes, pero de todos ellos sólo unos 20 forman parte de las proteinas. .

Los aminoácidos que un organismo no puede sintetizar y, por tanto, tienen que ser suministrados con la dieta se denominan aminoácidos esenciales; y aquellos que el organismo puede sintetizar se llaman aminoácidos no esenciales.

Para la especie humana son esenciales ocho aminoácidos: treonina, metionina, lisina, valina, triptófano, leucina, isoleucina y fenilalanina (además puede añadirse la histidina como esencial durante el crecimiento, pero no para el adulto)

Propiedades de los aminoácidos.

Los aminoácidos son compuestos sólidos; incoloros; cristalizables; de elevado punto de fusión (habitualmente por encima de los 200 ºC); solubles en agua; con actividad óptica y con un comportamiento anfótero.

La actividad óptica se manifiesta por la capacidad de desviar el plano de luz polarizada que atraviesa una disolución de aminoácidos, y es debida a la asimetría del carbono , ya que se halla unido (excepto en la glicina) a cuatro radicales diferentes.
Esta propiedad hace clasificar a los aminoácidos en Dextrogiros (+) si desvian el plano de luz polarizada hacia la derecha, y Levógiros (-) si lo desvian hacia la izquierda

Péptidos y Enlace peptídico.

Los péptidos son cadenas lineales de aminoácidos enlazados por enlaces químicos de tipo amídico a los que se denomina Enlace Peptídico. Así pues, para formar péptidos los aminoácidos se van enlazando entre sí formando cadenas de longitud y secuencia variable. Para denominar a estas cadenas se utilizan prefijos convencionales como:

a)Oligopéptidos.- si el nº de aminoácidos es menor 10.

Dipéptidos.- si el nº de aminoácidos es 2.

Tripéptidos.- si el nº de aminoácidos es 3.
Tetrapéptidos.- si el nº de aminoácidos es 4.

etc...
b) Polipéptidos o cadenas polipeptídicas.- si el nº de aminoácidos es mayor 10.

Cada péptido o polipéptido se suele escribir, convencionalmente, de izquierda a derecha, empezando por el extremo N-terminal que posee un grupo amino libre y finalizando por el extremo C-terminal en el que se encuentra un grupo carboxilo libre, de tal manera que el eje o esqueleto del péptido, formado por una unidad de seis átomos (-NH-CH-CO-), es idéntico a todos ellos.
Estructura tridimensional.

La estructura tridimensional de una proteina es un factor determinante en su actividad biológica. Tiene un carácter jerarquizado, es decir, implica unos niveles de complejidad creciente que dan lugar a 4 tipos de estructuras: primaria, secundaria, terciaria y cuaternaria.
Cada uno de estos niveles se construye a partir del anterior.

Propiedades de las proteínas


SOLUBILIDAD
Las proteinas son solubles en agua cuando adoptan una conformación globular. La solubilidad es debida a los radicales (-R) libres de los aminoácidos que, al ionizarse, establecen enlaces débiles (puentes de hidrógeno) con las moléculas de agua.

CAPACIDAD AMORTIGUADORA
Las proteinas tienen un comportamiento anfótero y ésto las hace capaces de neutralizar las variaciones de pH del medio, ya que pueden comportarse como un ácido o una base y por tanto liberar o retirar protones (H+) del medio donde se encuentran.

DESNATURALIZACION Y RENATURALIZACION
La desnaturalización de una proteina se refiere a la ruptura de los enlaces que mantenian sus estructuras cuaternaria, terciaria y secundaria, conservandose solamente la primaria. En estos casos las proteinas se transforman en filamentos lineales y delgados que se entrelazan hasta formar compuestos fibrosos e insolubles en agua. Los agentes que pueden desnaturalizar a una proteina pueden ser: calor excesivo; sustancias que modifican el pH; alteraciones en la concentración; alta salinidad; agitación molecular; etc...

ESPECIFICIDAD
Es una de las propiedades más características y se refiere a que cada una de las especies de seres vivos es capaz de fabricar sus propias proteinas (diferentes de las de otras especies) y, aún, dentro de una misma especie hay diferencias protéicas entre los distintos individuos. Esto no ocurre con los glúcidos y lípidos, que son comunes a todos los seres vivos.
7.- Funciones de las proteínas

Función ESTRUCTURAL
-Algunas proteinas constituyen estructuras celulares:
Ciertas glucoproteinas forman parte de las membranas celulares y actuan como receptores o facilitan el transporte de sustancias.
Las histonas, forman parte de los cromosomas que regulan la expresión de los genes.

- Función ENZIMATICA
-Las proteinas con función enzimática son las más numerosas y especializadas. Actúan como biocatalizadores de las reacciones químicas del metabolismo celular.

Función HORMONAL

-Algunas hormonas son de naturaleza protéica, como la insulina y el glucagón (que regulan los niveles de glucosa en sangre) o las hormonas segregadas por la hipófisis como la del crecimiento o la adrenocorticotrópica (que regula la síntesis de corticosteroides) o la calcitonina (que regula el metabolismo del calcio).

Función REGULADORA
-Algunas proteinas regulan la expresión de ciertos genes y otras regulan la división celular (como la ciclina).

Función HOMEOSTATICA
-Algunas mantienen el equilibrio osmótico y actúan junto con otros sistemas amortiguadores para mantener constante el pH del medio interno.

Función DEFENSIVA
Las inmunoglogulinas actúan como anticuerpos frente a posibles antígenos.
La trombina y el fibrinógeno contribuyen a la formación de coágulos sanguíneos para evitar hemorragias.

Las mucinas tienen efecto germicida y protegen a las mucosas.
Algunas toxinas bacterianas, como la del botulismo, o venenos de serpientes, son proteinas fabricadas con funciones defensivas.

Función de TRANSPORTE

La hemoglobina transporta oxígeno en la sangre de los vertebrados.
La hemocianina transporta oxígeno en la sangre de los invertebrados.
La mioglobina transporta oxígeno en los músculos.
Las lipoproteinas transportan lípidos por la sangre.
Los citocromos transportan electrones.

Función CONTRACTIL

La actina y la miosina constituyen las miofibrillas responsables de la contracción muscular.
La dineina está relacionada con el movimiento de cilios y flagelos.

Función DE RESERVA
La ovoalbúmina de la clara de huevo, la gliadina del grano de trigo y la hordeina de la cebada, constituyen la reserva de aminoácidos para el desarrollo del embrión.
La lactoalbúmina de la leche.
ACIDOS NUCLEICOS
Son biopolímeros, de elevado peso molecular, formados por otras subunidades estructurales o monómeros, denominados nucleótidos.

El descubrimiento de los ácidos nucleicos se debe a Meischer (1869), el cual trabajando con leucocitos y espermatozoides de salmón, obtuvo una sustancia rica en carbono, hidrógeno, oxígeno, nitrógeno y un porcentaje elevado de fósforo. A esta sustancia se le llamó en un principio nucleina, por encontrarse en el núcleo.
1.- Composición de los ácidos nucleicos


Son biopolímeros formados por unidades llamadas monómeros, que son los
nucleótidos.
Los nucleótidos están formados por la unión de:
a) Una pentosa, que puede ser la D-ribosa en el ARN; o la D-2- desoxirribosa en el ADN
b) Una base nitrogenada, que puede ser:
- Púrica, como la Guanina (G) y la Adenina (A)
- Pirimidínica, como la Timina (T), Citosina (C) y Uracilo (U)

C) Ácido fosfórico, que en la cadena de ácido nucleico une dos pentosas a través de una unión fosfodiester. Esta unión se hace entre el C-3´de la pentosa, con el C-5´de la segunda.
A la unión de una pentosa con una base nitrogenada se le llama nucleósido. Esta unión se hace mediante un enlace -glucosídico.
- Si la pentosa es una ribosa, tenemos un ribonucleósido. Estos tienen como bases nitrogenadas la adenina, guanina, citosina y uracilo.
Si la pentosa es un desoxirribosa, tenemos un desoxirribonucleósido. Estos tienen como bases nitrogenadas la adenina, citosina, guanina y timina.
A.- ESTRUCTURA.

Está formado por la unión de muchos desoxirribonucleótidos. La mayoría de las moléculas de ADN poseen dos cadenas antiparalelas ( una 5´-3´y la otra 3´-5´) unidas entre sí mediante las bases nitrogenadas, por medio de puentes de hidrógeno.

La adenina enlaza con la timina, mediante dos puentes de hidrógeno, mientras que la citosina enlaza con la guanina, mediante tres puentes de hidrógeno.
El ADN es el portador de la informacion genética, se puede decir por tanto, que los genes están compuestos por ADN.

ESTRUCTURA PRIMARIA DEL ADN
Se trata de la secuencia de desoxirribonucleótidos de una de las cadenas. La información genética está contenida en el orden exacto de los nucleótidos.

ESTRUCTURA SECUNDARIA DEL ADN
Es una estructura en doble hélice. Permite explicar el almacenamiento de la información genética y el mecanismo de duplicación del ADN. Fué postulada por Watson y Crick,basandose en:
- La difracción de rayos X que habían realizado Franklin y Wilkins

- La equivalencia de bases de Chargaff,que dice que la suma de adeninas más guaninas es igual a la suma de timinas más citosinas.

ESTRUCTURA TERCIARIA DEL ADN.

Se refiere a como se almacena el ADN en un volumen reducido. Varía según se trate de organismos procariontes o eucariontes:
a) En procariontes se pliega como una super-hélice en forma, generalmente, circular y asociada a una pequeña cantidad de proteinas. Lo mismo ocurre en la mitocondrias y en los plastos.

b) En eucariontes el empaquetamiento ha de ser más complejo y compacto y para esto necesita la presencia de proteinas, como son las histonas y otras de naturaleza no histona (en los espermatozoides las proteinas son las protaminas). A esta unión de ADN y proteinas se conoce como cromatina, en la cual se distinguen diferentes niveles de organización:
-
Nucleosoma
- Collar de perlas
- Fibra cromatínica
- Bucles radiales
- Cromosoma.

B.- DESNATURALIZACIÓN DEL ADN.

Cuando la temperatura alcanza el punto de fusión del ADN, la agitación térmica es capaz de separar las dos hebras y producir una desnaturalización. Este es un proceso reversible, ya que al bajar la temperatura se puede producir una renaturalización. En este proceso se rompen los puentes de hidrógeno que unen las cadenas y se produce la separación de las mismas, pero no se rompen los enlaces fosfodiester covalentes que forman la secuencia de la cadena.
La desnaturalización del ADN puede ocurrir, también, por variaciones en el pH.
4.- ARN o ácidos ribonucleico o RNA


A.- ESTRUCTURA

Está formado por la unión de muchos ribonucleótidos, los cuales se unen entre ellos mediante enlaces fosfodiester en sentido 5´-3´( igual que en el ADN ).
Están formados por una sola cadena, a excepción del ARN bicatenario de los reovirus.

ESTRUCTURA PRIMARIA DEL ARN

Al igual que el ADN, se refiere a la secuencia de las bases nitrogenadas que constituyen sus nucleótidos.

ESTRUCTURA SECUNDARIA DEL ARN

Alguna vez, en una misma cadena, existen regiones con secuencias complementarias capaces de aparearse.

ESTRUCTURA TERCIARIA DE ARN
Es un plegamiento, complicado, sobre al estructura secundaria.

B.- CLASIFICACIÓN DE LOS ARN.
Para clasificarlos se adopta la masa molecular media de sus cadenas, cuyo valor se deduce de la velocidad de sedimentación. La masa molecular y por tanto sus dimensiones se miden en svedberg (S). Según esto tenemos:

ARN MENSAJERO (ARNm)

Sus características son la siguientes:

- Cadenas de largo tamaño con estructura primaria.
- Se le llama mensajero porque transporta la información necesaria para la síntesis proteica.
- Cada ARNm tiene información para sintetizar una proteina determinada.
- Su vida media es corta.

a) En procariontes el extremo 5´posee un grupo trifosfato
b) En eucariontes en el extremo 5´posee un grupo metil-guanosina unido al trifosfato, y el el extremo 3´posee una cola de poli-A

En los eucariontes se puede distinguir también:
- Exones, secuencias de bases que codifican proteinas

- Intrones, secuencias sin información.
Un ARNm de este tipo ha de madurar (eliminación de intrones) antes de hacerse funcional. Antes de madurar, el ARNm recibe el nombre de ARN heterogeneonuclear (ARNhn ).
ARN RIBOSÓMICO (ARNr)
Sus principales características son:

- Cada ARNr presenta cadena de diferente tamaño, con estructura secundaria y terciaria.
- Forma parte de las subunidades ribosómicas cuando se une con muchas proteinas.
- Están vinculados con la síntesis de proteinas.

ARN NUCLEOLAR (ARNn)

Sus características principales son:
- Se sintetiza en el nucleolo.
- Posee una masa molecular de 45 S, que actua como recursor de parte del ARNr, concretamente de los ARNr 28 S (de la subunidad mayor), los ARNr 5,8 S (de la subunidad mayor) y los ARNr 18 S (de la subunidad menor)

ARN TRANSFERENTE (ARNt)

Sus principales características son.

- Son moléculas de pequeño tamaño
- Poseen en algunas zonas estructura secundaria, lo que va hacer que en las zonas donde no hay bases complementarias adquieran un aspecto de bucles, como una hoja de trebol.

- Los plegamientos se llegan a hacer tan complejos que adquieren una estructura terciaria
- Su misión es unir aminoácidos y transportarlos hasta el ARNm para sintetizar proteinas.

C.- SINTESIS Y LOCALIZACIÓN DE LOS ARN

En la célula eucarionte los ARN se sintetizan gracias a tres tipos de enzimas:
- ARN polimerasa I, localizada en el nucleolo y se encarga de la sinteis de los ARNr 18 S, 5,8 S y 28 S.
- ARN polimerasa II, localizada en el nucleoplasma y se encarga de la síntesis de los ARNhn, es decir de los precursores de los ARNm
- ARN polimerasa III, localizada en el nucleoplasma y se encarga de sintetizar los ARNr 5 S y los ARNm.

5.- Funciones de los ácidos nucleicos

Entre las principales funciones de estos ácidos tenemos:
- Duplicación del ADN
- Expresión del mensaje genético:
- Transcripción del ADN para formar ARNm y otros
- Traducción, en los ribosomas, del mensaje contenido en el ARNm a proteinas.





No hay comentarios:

Publicar un comentario